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The paper presents a review of applications of the model of regular solutions to ionic melts 
with regard to metallurgical slags. Various theoretical approaches to systems with a single common 
ion are discussed. A survey of experimentally determined interaction coefficients for basic metal­
lurgical systems is given. Data for the model of regular solutions for arbitrary numbers of cations 
and anions are briefly discussed. 

1. INTRODUCTION 

Many metallurgical processes belong to the region of applied physical chemistry; 
for example, steel industry deals with a combination of selective oxidation and 
reduction at high temperatures. From the thermodynamic point of view, the most 
important parameters for controlling the pyrometallurgical reactions are the tem­
perature, the partial pressure of oxygen, and the activities of the components in both 
condensed phases (in the slag and in the metal phase). Thermodynamic considerations 
have served metallurgists for a long time to estimate the possible reactions by using 
apparent equilibrium constants or changes of the Gibbs free energy (determination 
of the course of the process under study). This method is reliable in the case of binary 
or ternary slag systems. A survey of thermodynamic models of binary silicate melts 
was given by GaskeUl. However, the thermodynamic properties of multicomponent 
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melts arc: determined either experimentally or by using the Tyomkin model and the 
model of regular solutions with a common oxygen anion (Sections 2 and 4). 

The aim of this work is a critical evaluation of the present applications of the 
model of regular solutions, especially to systems with a common oxygen ion. The 
models of ideal solutions have already been discussed in detail2 . Therefore, only the 
basic facts concerning the Tyomkin's model and its relation with regular solutions 
will be discussed here. 

2. TYOMKIN'S :\IODEL OF PERFECT IONIC SOLUTIONS 

Tn~ theory of electrolytes elaborated by Debye, Huckel, and Falkenhagen and based 
on the concept of ionic atmosphere surrounding every ion meets with difficulties 
even in mojerately concentrated solutions of both aqueous and nonaqueous electro­
lytes. where corrections must be introduced. It cannot be applied to melted electrolytes 
because of the close proximity of their ions. 

Models of melted electrolytes are based on analogies with molecular solutions. 
A model of perfect ionic solutions was proposed by Tyomkin3 , according to whom 
the cations and the anions are arranged in a quasicrystalline lattice. It is assumed 
tlut no other species are present. Thus, it follows that (i) the neighbours of every 
ion 3.r(.': ions with an opposite charge, (ii) interaction of ions of a given charge with 
th~ir neighbours is independent of their nature, i.e. the cations among themselves 
and the anions among themselves are energetically equivalent. Replacement of an 
ion by another ion of the same sign does not lead to energetic changes in the solution. 

Tne model requires to define molar fractions of the cations and of the anions. 
A C) .npletely disso;:;iated ele;:;trolyte, which is electroneutral, consists formally of 
tw,) individuOlI solutions: one of the cations and one of the anions. Since ions of 
ditTere:1t sign in th~ quasicry:;talline lattice cannot be interchanged, the calculation 
oj' the thermojynamic functions of the solution is restricted to the calculation of the 
entropy of mixing for the cations and for the anions separately. Their molar fractions 
are defined as 

x: n: 
Ix~ (1) _J_ 1 , J I +' ni 

n· 
Ixi (2) Xj 

=_J_ , 1 • 
Ini 

The superscripts + and - refer to cations and anions. The change of the entropy 
of mixing is given as llS = llS+ + llS-, where 

llS+ = kin W+, llS- = kin W- . (3) 
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Here, k is the Boltzmann constant; the thermodynamic probabilities for the cations, 
W+ , and for the anions, W-, are given by the equations 

W- = (NA Lvini)! 
IT(NAvjnj)! ' 

(4) 

where NA denotes Avogadro's constant, n; etc. are molar fractions as above, vi etc. 
are the the corresponding stoichiometric coefficients for fully dissociated salts. 
By using the Stirling's approximation for factorials of large numbers 

InN! ~ NlnN - N (5) 

the following equation can be derived for the entropy of mixing, LlSmix, corresponding 
to the formation of a solution from nl moles of a salt, Mv,+Av, -, and n2 moles of 
Nv~+Bv2-: 

(6) 

For an ideal solution, we have 

LlS!ix = -R(nl In Xl + n2ln X2) (7) 

A perfect ionic solution and an ideal solution differ only by the expression for the 
entropy of mixing. For systems with a common anion, the molar fraction of the 
anion is equal to 1 and the molar fractions of the cations are equal to those of the 
components for vi = vi = 1. If we define the components so that each one contains 
only one cation (e.g. for the system FeO + AI20 3 + Si02 we define the components 
FeO, Al03 / 2 , and Si02 ), then Tyomkin's perfect ionic solution is formally identical 
with an ideal solution. 

Although Tyomkin did not consider the presence of complex particles, some 
authors4 have attempted to generalize this model for ideal mixtures of 0 2 - and 
SiO!- anions. 

Tyomkin's model has been used mainly in metallurgy (determination of activities 
in m.::lted metallurgical slags, reactions in them, reactions between melted slag and 
melted metal, evaluation of phase diagrams, etc.). However, the weak point of the 
model is the assumption of energetic equivalence of ions of the same sign, which is 
not satisfied in real systems. 

3. MODEL OF REGULAR SOLUTIONS IN BINARY MELTS WITH 
A COMMON ION 

A real solution for which the entropy of mixing and the volume of mixing are ideal 
and the enthalpy of mixing is non-ideal is called a "strictly regular solution". In the 
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text below, we shall use the notion "regular solution" introduced by Hildebrand 5 • 

The theory of regular solutions was first applied to ionic melts by Hildebrand and 
Salstrom6 . By using statistical thermodynamics, they derived the following equation 
for a binary system with a common ion (e.g. anion): 

(8) 

Here, aGIo aS~ and aVr denote changes of additional functions, ell' e22' and e 12 

are partial molar energies characterizing the bond between the cations of the com­
ponents(e.g. in the system AgBr-MBrthe bonds Ag+ -Ag+, M+ -M+, and Ag+ -M+), 
Tdenotes absolute temperature and p pressure. 

From the definition of regular solutions and from Eq. (8) it follows that 

aG~ = RTln 1'1 = ~12X~ , (9) 

where 1'1 is the activity coefficient and ~12 interaction parameter. 

Since ~Ij is not equal to zero in real solutions, the activity of species i is not equal 
to its molar fraction (a i =F Xi). The standard state corresponds mostly to the pure 
liquid species i at the temperature and pressure of the system. 

The linear dependence of G~ on x~ was first experimentally verified in binary liquid 
meIts6 AgBr-MBr (M = Li, Na, K, Rb) by using the galvanic cell 

Ag(s) I AgBr-MBr (I) I Br2 (g), C (graphite). 

At standard pressure of Br2 and in the standard state of Ag, Eq. (9) and the Nernst 
equation can be combined to give 

(10) 

For AgBr-MBr (M = L, Na, K, Rb) the values of ~12 were determined as 7870 
4400, - 6200, and -10 800 J mol- 1 , respectively. Based on these results, Hildebrand 
and Salstrom6 assumed that all the mentioned systems have the properties of regular 
solutions. However, later it turned out that the difference between the calorimetric 
enthalpy of mixing and the value of aG~ obtained from electrochemical measurements 
in the AgBr-RbBr system is not equal to zero 7. Thus, the linear dependence of aG~ on 
x~ is a necessary, but not sufficient condition from the point of view of regular be­
haviour. This was not taken into account (as shown below on examples of metal­
lurgical slags) and the values of ~ij according to different authors are considerably 
different. 
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4. MODEL OF A REGULAR SOLUTION IN MULTI COMPONENT SYSTEMS 
WITH A COMMON OXYGEN ANION 

4.1 Kozheurov's concept of regular ionic solutions 

2291 

Kozheurov s started from older works3 ,6 and elaborated first a theory for melted 
electrolytes with a single common cation or anion. The theory is based on statistical 
thermodynamics. In the first approximation, the theory of ionic regular solutions 
assumes that the thermal effect during formation of a ionic solution is due to the 
different character of the bonds of different cations with the same anion or of different 
anions with the same cation. The inner energy of the system is expressed ass 

k k-1 k 

V = LXPi+ L L XiX/Xij' (11) 
1=1 i=l j=i+1 

Here, Vi (J mol- 1) denotes inner molar energy of species i (compound), k is the 
number of cationic ( or anionic) species in the completely dissociated electrolyte, 
x j and x j are molar fractions of the corresponding ions. The quantity IX ij is, according 
to Kozheurov, the energy of mixing defined as 

(12) 

The terms in parentheses correspond to energetic changes during replacement of an 
ion of a pure component (eii) by another sort of ion (eij), and analogously for ejj 
and Bji • 

The definition of the configuration entropy is in agreement with the Tyomkin's 
model of perfect ionic solutions. The inner energy of a regular solution and the entro­
py of a perfect solution thus represent a starting point for the derivation of the 
Helmholtz or Gibbs energy of the solution, the corresponding partial molar quan­
tities, additional thermodynamic quantities, activities, and activity coefficients of 
the solution constituents. 

If the volume changes are neglected, the additional thermodynamic quantities 
of an ionic solution are expressed by the second term on the right-hand side of Eq. 
( 11) 

k-1 k 

LlVE = LlHE = LlGE = I I XjX/Xij' (13) 
i=lj=i+1 

On multiplying Eq. (13) by the total number of moles of cations ( or anions) in solu­
tion. we obtain 

k k-1 k k 

LlGE L vin i = L I njVinjVjIXij/ I l'jn j . (14) 
i=l i=l i=I+1 i=l 
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According to thermodynamics, we have for ion species 1 

On introducing here Eq. (14) we obtain 

1- I k k 

RTln YI = [v 1( L vjnjlXil + L VjnjlXil) L vin i -
i=1 i=l+l i=1 

k-I k k 

- V, L L vjnjVjnjlXij]!( L Vjl1 i )2 • 
i=lj=i+1 j=1 

The ionic fraction is defined as 

k 

Xj = Vjnd L vjnj. 
j=l 

From Eqs (16) and (17) we obtain 

I-I k k-I k 

RTln y, = v,( L XilXil + L XjlXi/ - L L XjXpij)' 
i=1 ;=1+1 i=1 j=i+l 

The chemical potential is then given as 

fJ.I = fJ.? + RTln y" 

(I5) 

(16) 

(17) 

(18) 

(19) 

Here. fJ.? denotes chemical potential of a perfect ionic solution according to the 
Tyomkin's model 

(20) 

F? = G? denotes Gibbs (Helmholtz) energy, VI number of ions of species 1 formed by 
complete dissociation. 

The first approximation of the theory of regular ionic solutions involves only the 
first coordination sphere of different ions around a central cation. The coordination 
number is considered the same for all cation species, usually z = 12. Systems with 
a common cation are analogous. Kozheurov8 developed further the quasichemical 
approximation for binary and ternary systems with regard to different sorts of cations 
or anions in the system, and discussed the influence of other coordination spheres 
on the thermodynamic functions of the melted electrolyte. His approach to the 
definition of the mean activity coefficient of a constituent is new. In aqueous solu-
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tions, the mean activity coefficient is usually defined 8 as 

(21) 

Here, a denotes the activity, x + and x _ are molar fractions of cations and anions of 
a dissociated salt, v + and v _ are their stoichiometric numbers. This definition cannot 
be applied to systems with a common anion, and according to Kozheurov8 it is 
necessary in such a case to set v _ = 0, since this quantity does not occur in the de­
finition of the chemical potential (Eqs (19, 20». Similarly, for systems with a common 
cation we have8 v + = 0. A general definition of the activity coefficient cannot be 
given; it depends on the expression for the chemical potential in the given ionic 
solution. 

The mixing energies (Xij occurring in Kozheurov's theory in the expressions for the 
chemical potential are, according to experimental data, temperature-dependent. 
The author gave a semiquantitative explanation for this dependence based on sta­
tistical thermodynamics (i.e. on an approximate expression for the partition function 
of a melted electrolyte). 

The Kozheurov's model is represented by a strictly regular solution with an entropy 
of mixing identical to the Tyomkin's model. Deviations from ideality, represented by 
the latter, are manifested by non-zero values of additional enthalpy and Gibbs energy 
in the Kozheurov's model. The mathematical formulation of this model implies formal­
ly its transition into the Tyomkin's model when all mixing energies are equal to zero. 

From the theoretical point of view, different interaction energies between different 
species lead not only to changes of the additional enthalpy and Gibbs energy; they 
also disturb the random statistical arrangement and lead to non-zero values of 
additional entropy. The model of a strictly regular solution can be accepted on the 
as:,umption that the entropy changes are small compared with the enthalpy changes. 
It should be noted that the same considerations apply to non-ionic melts, e.g. melted 
metal alloys. 

The possibility of an experimental evidence depends on the method and accuracy 
of the determination of mixing energies in melted electrolytes. Experimental methods 
in the region of medium temperatures are demanding and their accuracy is lower 
compared to measurements in aqueous electrolytes at usual temperatures. The 
determination of mixing energies will be dealt with in Section 4.3. 

In applying the theory to melted metallurgical slags with a high content of Si02 

(acidic slags), Kozheurov admits the possibility of a preferential (not statistically 
random) grouping of oxygen anions around the silicium ions and polymeration of 
silicate ions. This situation is taken into account by a semiempirical correction of the 
thermodynamic functions represented by additional energy of mixing8 . The correction 
was verified by calculation of the limited solubility in binary silicate melts. 
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4.2 Lumsden's concept of regular ionic solutions 

Lumsden9 ,lO contributed significantly to extending the model of regular solutions 
to metallurgical melts. He used first the model to describe binary metal alloys9. 

In deriving a model for oxide systems he used, by analogy to Kozheurov8 , statistical 
thermodynamics. He proved theoretically that binary systems of the type XO-YOu 
containing cations in the second and third oxidation state have the properties of 
a regular solution. He assumed that the system FeO-Fez03-SiOz forms a regular 
solution and contains cations Fez + ,Fe3+ and Si4 + which are randomly distributed 
in the quasicrystalline lattice of oxygen anions. The author considers FeO, Fe01.S 
and SiOz as formal components of the system with a common oxygen anion, hence 
the coefficient v expressing the number of cations formed by dissociation of an oxide 
molecule need not be introduced. 

Lumsden derived the dependence of the activity coefficients of species i,j, k on 
the composition and temperature as follows. The change of the additional enthalpy 
ARE in a ternary regular solution is given as 

(22) 

Partial differentiation of Eq. (22) with respect to the content of the particular species 
on the assumption that ASE = 0 leads to the following expression for the activity 
coefficient of species i: 

(23) 

Analogous expressions hold for species j and k. Generalization of this procedure for 
a polycomponent system gives 

RTln Yi = Icxljx} + I I (cxij + (J.ik - (J.jk) XjXk • (24) 
j j k 

This general expression can only be used if no strong interact:or.s exist between the 
components of the polycomponent system. 

According to Lumsden 1 0, the activity coefficient in the binary system CaO-SiOz 
can be calculated as 

(25) 

It can be shown that Eqs (18) and (24) are identical. To this end, the formal content 
of the oxides must be expressed in an analogous way (VI = 1) and the molar fraction x, 
in Eq. (18) must be expressed as 

1 - Ix; = x,, 
i*' 

(26) 
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Since Lumsden 10 started from the same theoretical assumptions and arrived at the 
same conclusions as Kozheurov 8 , the priority belongs to the latter, although 
Lumsden's work has been more widely acknowledged. 

4.3 Discussion of experimental values of interaction parameters 

The interaction parameter rJ.u expresses quantitatively the deviation from Tyomkin's 
model of perfect ionic solutions. The model of regular solutions assumes equal values 
of rJ.ij for the same combinations of ions i and j regardless of the composition. 

A theoretical calculation of the interaction parameters rJ.lj is a problem of quantum 
mechanics. Its solution is not known and there is only little hope that it will be known 
in the future. Since the interaction parameters are determined by experimental 
methods, the model under discussion is semiempirical in substance. 

The interaction parameters rJ.ij can be determined by 

- measurement of the electromotive force of galvanic cells6 , 

- from the liquidus curves of phase diagrams11 , 
- by measurement of physical properties (viscosity, surface tension)12, 
- from combined chemical and phase equilibria for reactions of gases with 

liquids l3 ,14. 

The values of rJ.ij are then determined by regression methods based on the cor­
responding model. 

The last of the mentioned methods will serve us to demonstrate some inadequacies 
in the determination of rJ.ij especially in multicomponent systems. Shim and Bayn-ya 13 
determined the interaction parameters from the redox equilibrium between Fe2 + 

and Fe3+. They determined the interactions (Fe2+ -Si4+) and (Fe3+ -Si4+) in the 
system FeO-Fe01.5-Si02 (subscripts 1,2,3) as follows. The equilibrium constant 
for the reaction 

dG O = -126820 - 53·01 T (J mol-I) 

is given by the equation 

RTln K = RTln [x(FeO)jx(Fe01.5)] + 0·25 RTln P(02) + 

(A) 

(27) 

+ RTln [y(FeO)jy(Fe01.5)] • (28) 

From the general equation (24) we express y(FeO) and y(Fe01.5) as 

RTln y(FeO) = rJ. 12x2(Fe01.5) + rJ.13x2(Si02) + 

+ (rJ. 12 + rJ. 13 - rJ.23) x(Fe01.5) x(Si02)' 
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RTln 1'(Fe01.5) = ClI2x2(FeO) + Cl23x2(Si02) + 

+ (Cl 12 + Cl 23 - Cl 13 ) x(FeO) x(SiOz). (30) 

By combining Eqs (27-30) and using the known value of !X 12(Fe2 + -Fe3+) = 
-18660 J (ref. IO) we obtain 

(Cl23 - Cl 13) x(Si02) = 18 660[x(FeO) - x(Fe01.5)] + 

+ RTln [x(FeO)jx(Fe01.5)] + 0·25 RTln P(02) + 
+ 126820 - 53·01 T = Y. (31) 

The difference of Cl23 - Cl13 is determined from the slope of the dependence of Y 
on x(Si02). The value of Cl13(Fe2+ -Si4 +) is found in na analogous way from the 
equation 

Fe(s) + 1- 02(g) = FeO(I) . (B) 

The interaction parameters thus found are used in calculating other values of Clij in 
quaternary or multicomponent oxide systems, but always on the basis of the chemical 
reactions (A) and (B). 

This approach certainly enlarged our knowledge of the interaction parameters; 
however a considerable uncertainty arises from the fact that all the found values 
of Cl ij are based on the value of Cl(Fe2+ -Fe3+) = -18660 J, on the value of !lGo for 
reactions (A) and (B), and on the ratio of Fe2 + /Fe3 + and value of P(Oz) at high 
temperatures (compare Eq. (31). The authors l3 ,15 thelr.selves arrived later at more 
accurate values of Clij. which differ appreciably from the original ones (Table I). 
Thus, it seems that these interaction parameters have the character of regression 
coefficients for the given set of experiments and the rr.elt need not have the properties 
of a regular solution (cf. Section 3). 

A survey of the interaction parameters Clij of the components of metallurgical 
slags is given in Table I. There are considerable differences 1::etween the data of 
different authors. On comparing the values of Clij according to Kozheurovs and 
Ban-yaI3 - IS for the basic metallurgical system Ft:0-h0 1 . S-CaO-MgO-MnO-Si02 

it turns out that none of them is in agreement. It is apparent that the assumptionS 
of ideal behaviour in the system CaO-MgO-MnO (Clij =1= 0) is not fulfilled, since 
other authors give values of Clij up to about - 105 J (Table I). 

Similarly, the values of Cl(Fe2+ -Fe3+) determined from the same experirr.ental 
data l6 by different authorss,lo differ by more than 250~~. Interestingly enough, this 
parameter was used to construct the whole ensemble of Clij. 

At present, ensembles of Cl ij values are derived on the assumption that the melted 
electrolyte shows regular behaviour. There is a tendency to confirm this situation 
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TABLE T 

Published \alues of interaction energies 

Couple lXii' J mol- 1 Ref. I Couple a.iJ' J mol- 1 Ref. 
I 
1--------

Fe2 + -Fe3 + -48530Q 8 I Fe3+ _p5 + 14640 ± 6 000 28 
-18660 10 

0 17 Na+ -Si4 + -111290 18 
-6230 21 

Na+ _p5 + -50210 31 
Fe2+ -Na+ 19250 18 

Mg2+ -Ca2+ 18830 ± 8000 13 
Fe2 + _Mg2+ 0 8 -100420 IS 

12850 ± 8 000 13 
33470 IS Mg2+ -Mn2+ -23850, 38900 30 

61920 32 
Fe2+ -Ca2 + 0 8 

-31380 14 Mg2+ -Si4 + -113 040, -188400 8 
-14650 15, 21 -66950 15 

- 50 210 ± 12 000 19 -127600± 8000 13 
-48120 20 

Mg2+ _ps+ -37660 15 
Fez + -Mn2+ 0 8, 17,23-26 

7110 22 Ca2 + _AI 3+ -83680 21 
-48120 ± 10 000 33 

Fe2+ _AI 3+ -16740 21 33 
-1760 24,27 Caz + -Ti4 + -167360 20 

Fez + - Ti4+ -41840 17 Caz + -Si4 + -112970, -37680 8 
-37660 ± 8 000 19 -133900 15 

-138500 17 
Fez + -Si4+ 0 8 -272 000 ± 8000 19 

-41840 10,24,27 -167360 21 
-28030, -21750 17 --125500 ± 12000 34 
-41804 ± 8 000 19 

- 35500 21 Caz + _p5+ -201 000 8 
-251000 15 

Fe2+_ps+ -31380 ± 4 000 28 
Mn2+ -Ca2+ 0 8 

Fe3 + -Na+ -74890 18 -16740 20 
-156900 29 -92 050 35 

Fe 3+ _Mg2+ -23510 ± 8 000 13 Mn2+ _AI 3 + -20920 24.27 
-2930 15 

Mn2+ _Ti4+ -66950 24 
Fe3 + -Ca2 + -95810, -102500 15 

-64850 21 Mn2+ -Si4 + 0, -41 868 8 
- 114 650 ± 20 000 19 -65270 17 

-100400 20 

Collect. Czech. Chem. Commun. (Vol. 54) (1989) 



2298 Lesko, Kalousek, Kupcak, Bochiiak: 

TABLE I 

( Continued) 
------ ----~ 

Couple lXij' J mol- 1 Ref. Couple lXii' J mol- 1 Ref. 

Fe3 + -Mn2+ -56480 22 -75310 22 
-12550 30 -76820 24,27 

Fe3 + -AI3 + 25100 21 I Mn2+ _ps+ -108800 30 
Fe3 + -Ti4+ 1260 ± 16000 19 A1 3 + -Si4 + -62760 21 

17570 23 - 52300 24,27 
Fe3 + -Si4 + 13 390 10 Si4+ _p5 + 83680 31 

24270 17 
32 640 ± 16 000 19 

20200 21 

in complicated systems by the choice of suitable, experimentally not evidenced and, 
eventually, adapted interaction parameters. This may lead to a formal agreement 
of the model with experimental data, but not to elucidation of the nature of the 
interaction parameters. 

5. MODEL OF REGULAR SOLUTIONS WITH ARBITRARY NUMBERS 
OF CATIONS AND ANIONS 

Kozheurov and coworkers36 developed further the model of regular ionic solutions: 
first for a melt consisting of two cationic and two anionic species, then for systems 
involving arbitrary numbers of cations and anions37 •38 • The basic idea is that the 
energy of cation-anion interaction depends on the presence of all other ions in 
the melt. This concept is formulated mathematically by the series 

j-l 8 I 8 "e.. "e .. + L ~ Yn + L -1.l Yn 
n=l8Yn n=j+l8Yn 

(32) 

(33) 

Here, Eij denotes internal energy corresponding to one mole of cations formed by 
dissocation of a component of the melted electrolyte, E?j is the internal energy of the 
pure component defined similarly, Z is the coordination number of the quasicrystal­
line lattice, which is the same for all components, k is the number of cationic species, 
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I the number of anionic species in the system, Xm and Yn denote molar fractions of 
cations and anions. 

The configuration entropy is in accord with the Tyomkin's model. Equation (32) 
leads after a longer rearrangement to complicated expressions for the thermo­
dynamic functions, activities, activity coefficients, and chemical potentials37 ,38. The 
results w<!re verified by studies of the solubility of hydrogen in slags containing 
FeO, FeS, CaO, and CaS, equilibrium between water vapour and slags consisting 
of CaO, A120 3 , and Si02, distribution of sulphur in the basic slag FeO, MnO, CaO, 
Si02, FeS etc. 

A different approach to the thermodynamics of regular ionic solutions represented 
by melted electrolytes was used in ref. 39. The basic idea can be more simply for­
mulated for a system of two cationic and two anionic species. If we consider, e.g., 
a cation KI in a quasicrystalline lattice with a coordination number Z, then the pro­
bability of occurrence of r cations KI and Z - r cations K2 as the closest neighbours 
of the cation K I mentioned can be expressed by the binomial distribution function 

P () (Z) r Z-r 
Kl r = r XIX 2 • (34) 

Here, Xl and X2 are molar fractions of cations Kl and K2. A similar consideration 
applies to an anionic quasicrystalline lattice with a coordination number ~, anion Al 
and (} neighbouring anions: 

(35) 

Since exchange of ions of different sign in the quasicrystalline lattice is not possible, 
both probabilities are considered as independent. Further it is assumed that the in­
teraction energy of an ion depends linearly on the number of neighbouring ions of 
the same kind. After an involved mathematical procedure, the thermodynamic func­
tions of the solution are derived. By using a multinomial distribution, the model was 
generalized for systems with arbitrary numbers of cationic and anionic species. 
The resulting equations are complicated and involve mixing energies defined in 
agreement with the Kozheurov's model. In limiting cases - a common anion or 
a common cation - the Kozheurov's model is obtained,and when the mixing energies 
are set equal to zero, the Tyomkin's model results. The criteria of thermodynamic 
consistency, published by Malinovsky40, were checked with the aim to calculate 
the liquidus curves of phase diagrams. The model satisfies also these criteria. The 
models of Kozheurov and of ref.39 corresponding to systems with general numbers 
of cations and anions differ by the additional Gibbs energy. The configuration 
entropies are in mutual agreement. 
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6. CONCLUSIONS 

The model of regular ionic solutions is at present a suitable tool permitting to interpret 
experimental data and - with some care - to predict some characteristics of melted 
electrolytes. It is probable that, in near future, the model will be defined with more 
precision, or possibly replaced by more elaborated models, which already have 
found application in the field of relatively simple systems of melted metals and salts. 
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